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In a preceding paper, we examined the GI wavefunctions of small molecules and found that the 
nonclassical or exchange kinetic energy, T x, dominates the changes in energy involved in chemical 
binding. Here we examine more closely the changes in T x with internuclear separation and find that 
A T X is large for valence orbitals centered on different atoms because of the large region in which the 
orbitals are contragradient (i.e., have gradients in obtuse directions). In fact for H 2 this contragradience 
accounts for 93 % of the calculated binding energy. In addition, the behavior of T X and A T x can usually 
be predicted from consideration of the permutational symmetry (Young tableau) involved in the wave- 
function. The concepts developed here provide an alternative interpretation of the nature of the 
chemical bond. 

Die in einer vorhergehenden Arbeit durchgeffihrten Untersuchungen der GI-Wellenfunktionen 
kleiner Molekfile ffihrten zu dem Ergebnis, dab der nichtklassische oder Austauschanteil der kineti- 
schen Energie T ~ bei ,~mderungen der Energie chemischer Bindungen iiberwiegt. In dieser Arbeit 
werden die ~nderungen yon T x mit dem Kernabstand ngher untersucht. Wir finden ein groBes A T X 
ffir an verschiedenen Atomen zentrierte Valenzorbitale wegen der grogen Region, in der die Orbitale 
,,kontragradient" (d. h. sie haben Gradienten in Richtungen, die einen stumpfen Winkel miteinander 
bilden) sind. Ffir H 2 sind 93 % der berechneten Bindungsenergie auf diese ,,Kontragradienz" zurfick- 
zuffihren. Ferner kann das Verhalten von T x und A T x normalerweise aus der Permutationssymmetrie 
(Young Tafeln) der Wellenfunktionen vorausgesagt werden. Die bier entwickelten Methoden erlauben 
eine alternative Interpretation der chemischen Bindung. 

1. Introduction 

In a preceding paper [1] we examined the GI wavefunctions [2, 3] of a number 
of small systems (both bound and unbound) and found in every case that chemical 
binding is dominated by the change in one term in the energy expression: the 
exchange kinetic energy, T x. Here we investigate why T x is so important and find 
that T x is dominated by a term (the contragradience) that is uniquely large for 
multicentered systems, i.e., molecules. Further examination of this term leads to 
concepts in terms of which general aspects of binding can be predicted using 
simple considerations of the spatial permutation symmetry forced on the elec- 
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tronic wavefunction by the spin symmetry coupled with the Pauli Principle. This 
leads to an alternative simple model of the chemical bond. 

The GI wavefunction involves a number of orbitals (equal to the number of 
electrons), each of which is solved for self-consistently in the field due to the other 
electrons. As the nuclear configuration changes, the fields change, and hence the 
orbitals change. However, in some cases it is useful to consider to treat a molecular 
complex AB using the orbitals appropriate for the separated systems A and B. 
Such wavefunctions will be referred to as the frozen wavefunctions of AB or some- 
times more simply as the frozen AB case. 

2. The Magnitude of the Exchange Terms 

In Fig. 1 we see that for the H 2 molecule the magnitude of T x is much larger 
than the exchange part of the electron-nuclear attraction energy (V "X) or the ex- 
change part of the electron repulsion energy (VEX). In Table 1 of I, we saw that 
A T x (the change in T x from the value at R = ~ )  dominates the binding energy for 
all molecules considered, determining its sign in every case. Consequently, it is 
of interest to understand why the magnitude of A T ~ is much larger than the other 
terms in the binding energy. First we will consider the ground state of H2. 
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Fig. 1. The exchange kinetic energy (TX), exchange nuclear attraction energy (V nx) and exchange electron 
repulsion energy (V ex) for the ground state of H2. T xF refers to the T x for the frozen wavefunction, and 
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A. The Hz Singlet State 

In Fig. 1 we see that T xF (T * for the frozen wavefunction of H2) behaves very 
much like the T x from R = oo to R = Re. In addition, in Table i of I we saw that 
A T * and A T *v are comparable (and of the same sign) for a number of bound and 
unbound systems (all systems considered). Since A T *v is also much easier to study 
(requiring only the wavefunctions for R = oo), we will concentrate in this section 
o n  r xF. 

The spatial part of the frozen G1 wavefunctions is 

~P = 01lab = �89 + ba] , (1) 

where a and b are just H l s  functions on the two protons. Thus, from Eq. (A-8) of 
Appendix A, the exchange kinetic energy is given by [-4] 

T ~ = - S D { ( a [ t l a ) + ( b l t [ b ) - 2 ( a l t l b ) } ,  (2a) 

where S = (a [b)  is the orbital overlap, and D = S/(1 + S 2) is the off-diagonal 
element of the orbital density matrix. Integrating by parts in (2a), we obtain 

where 

{ 2 } 
T x = - � 8 9  (Va. V a ) + ( V b .  V b ) - ~ - ( g a .  Vb) , 

(Va. Vb) = S d3xl [VCa(1)] " [Feb(l)] �9 

(2b) 

All other one-electron properties can also be divided into classical and exchange 
parts with the exchange part of the form in (2a); however, Eq. (2b) is specific to 
the case of kinetic energy. 

Now we will compare the changes upon molecule formation of the exchange 
parts of various properties in order to determine why the magnitude of A T x is 
so large. Replacing the t operator in (2a) by the simple scalar operators 1 and v', 
we obtain 

g ~ - - S D  ( a l a )  + (b ib)  - -~- (a lb )  , (3a) 

vnx= --SD (alvnla)+(b[vnlb) - - ~ ( a l v  Ib) , (3b) 

for the exchange parts of the total change and of the nuclear attraction energy, 
respectively. Eqs. (3a) and (3b) can be rewritten as 

Nx ; f dx 0x(1) (4) 
and 

V~ = I dx3vn(1) e~(1), (5) 
where 

ox(1) =-- ( -SD)  [r qb,,(1) + r (bb(1)- s (ba(1) ~)b(1)] (6) 

15" 
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is the exchange electron density [see (18) of I]. We cannot write T ~ in this way 
because of the g 2 operator;  however, from (2b) the quantity 

t~(1) = - � 8 9  [V~ba(1)] 2 + [V~bb(1)l 2 - ~- VqSa(1) �9 VqSb(1 ) (7) 

can be defined so that 
r x = ~ d3xltX(1). (8) 

Even though the form (8) is similar to that of(4) and (5), there is still an essential 
difference due to the difference in the form of the interchange term (the third term) 
of t ~ as compared to the interchange term of 0 ~. If ~b a and q~b are positive everywhere 
(as for frozen H2), then -(2/S)~ba(1 ) q~b(1) is negative everywhere and the inter- 
change term may cancel a large part of the noninterchange terms (the first two 
terms - in fact, for N ~ the cancellation is sufficient to lead to N ~=  0 for all R. 
However, the interchange term in t ~ involves a dot product and thus is positive 
wherever FqS~" [ r  is negative, that is, in the region in which the orbitals are 
contragradient. In this region the interchange term of T ~ adds to the other terms 
and enhances binding. In order to isolate the effect of this contragradience on P, 
we will define a new function, 

tnc =- �89 + lV~b,Z - ~ ,gC~a, ,gC~b,] , (9) 

called the noncontragradient part of t ~. The total noncontragradient part of T x 
is then 

T"r = S drat"C(r) �9 
We also define 

c(r) - []V~bJ ]Vq~bl- Vq~." gq~j] (113) 

to be the contragradience function and 

C = I d3rc(r) 

to be the total contragradience. Thus the contribution of the contragradience to 
T x is given by - D C  and we obtain 

T ~ = T " ~ - D C .  (11) 

Since c(r) is always positive, C is always positive; thus, since D is always positive 
for a singlet state, the contragradience contribution to T ~ is always negative (or 
zero). However, just as for 0 x, the interchange term of t nc opposes the noninter- 
change terms and thus leads to a reduced value for T no. In fact for the frozen wave- 
function of H 2, the resulting T ~ is zero for all R. That is, in this case all of the 
bonding effect of T x is due to the contragradience, C. The essential reason for this 
difference between N ~, V ~, and T x can be seen in Fig. 2, where the integrands of 
the interchange terms are plotted along the internuclear axis. We see that for 
N ~, V ~, and T ~ the plots are comparable. But - c(r) is zero outside the bonding 
region and quite negative in the bonding region, leading to a tX(r) term which is 
positive outside and negative inside the bonding region. In fact, the interchange 
term of T ~ is negative only in a sphere of diameter R passing through both nuclei. 
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As will be discussed below, a consideration of the contragradience function c(r) 
leads to a reasonable indication of which region of space contributes most to the 
bond. 

In Fig. 3 we show the ratio, Ri, of the interchange term to the non-interchange 
terms as a function of internuclear distance (frozen H2) for T x, V nx, and the ex- 
change electron-electron interaction energy 

V ex= - S D { [ a a l b b ] - s [ a b l a b ] } ,  (12) 

where [aal bb] and [ablab-1 are the Coulomb and exchange integrals. For V n~ 
and V ~ we have Ri < 1, and thus V n~ > 0 at all distances. Only for T x is Ri < 1, 
and consequently TX< 0 at all distances. As a result of these effects, T ~ is in- 
ordinately large in molecules. 

In summary, for H 2 T x is large and negative because of the contragradient 
nature of the orbitals on different centers and the concomitant effect on the inter- 
change term in T x. 

So far we have examined the energy changes for frozen orbitals. For each fixed 
R we should now allow the orbitals to readjust self-consistently. Since C dominates 
the AE we would expect the self-consistency readjustments of the orbitals to also 
modify C. In fact for H2 the change in C in proceeding from the frozen wave- 
function to the SCF wavefunction is small for larger R, and even at Re = 1.4ao the 
change in proceeding from the minimum basis SCF result to the large basis 
(optimized basis with s, p, and d functions) SCF result is only 1% (see Table 2 of I). 

B. Comparison with Other Descriptions 

The lowering of the kinetic energy associated with chemical bonding has been 
observed by a number of workers starting with Hellmann [5-1 who viewed molecule 
formation as an expansion of the effective confines of the valence electrons, thereby 
decreasing their kinetic energy. A more quantitative description was provided by 
Feinberg and Ruedenberg [6] who partitioned the kinetic energy of H~ into 
contributions parallel and perpendicular to the bond axis. In confirmation of 
Hellmann's original suggestion, they found a large decrease in the parallel contri- 
bution, TII, while the perpendicular components T• maintained essentially un- 
changed (from the value for the separated atoms). They traced this effect to the 
small magnitude of O(o/~z in the region between the nuclei (q~ is the wavefunction 
and z is parallel to the internuclear axis); in fact, the decrease occurs predominately 
in the portion, T~, of T H arising from the bond region. 

Our previous analysis [1] of the frozen wavefunction of H~- differs from our 
above treatment of frozen H 2 only in the form of the density matrix D; hence the 
effects described by Fig. 2 carry over to the H~- case. Clearly then for H2 +, C con- 
tains the same kinetic energy annihilating effect as does TI~. The shape of C(r) 
shown in Fig. 2 has about the same shape for all o- bonds. Consequently, we expect 
the conclusions of Feinberg and Ruedenberg about TI~ to be correct also for 
bonds of many-electron systems even though the corresponding {~oi/Oz } need not 
decrease drastically between the nuclei. It should also apply to polyatomic systems 
where the bond region may not be readily definable. 
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C. Other Two-Electron States 

So far in this section only the singlet state of H2 has been considered. For a two- 
electron triplet state the G1 spatial wavefunction is 

~sp __ 011ab = �89 [e - (12)] ab = �89 - ba), (13a) 

[cf. Eq. (1)] and thus the off-diagonal element of the orbital density matrix 
becomes [2] 

S 
D = (1 - S 2) (13b) 

rather than as in (2a). All the quantities (1)-(12) will have the same form, but now 
D is negative. Hence the contragradience is still dominant but now opposes bond 
formation. 

For a given pair of frozen orbitals the contragradient part of the energy is 

SC 
1 + S 2 (14a) 

for the singlet state and 
SC 

+ I_S-- ~ -  (14b) 

for the triplet state. For a typical bond distance (1.4a0) and pair of bonding 
valence orbitals, S ~ 0.7 so that the magnitude of (14b) is about three times that 
of (14a). Thus antisymmetric coupling of orbitals as in (13a) is three times as anti- 
bonding as symmetric coupling (1) would be bonding. 

Since C opposes bonding for the triplet state, we may expect that the changes 
in ~b a and ~b b upon going from frozen to SCF will now be such as to minimize the 
magnitude of C. In fact this is the case and for many-electron systems, similar 
arguments can be used in understanding the changes that occur as orbitals readjust 
self-consistently. 

D. Atoms and Ions 

We have considered pairs of orbitals centered at different points and found 
that if each orbital decreases monotonically, then the orbitals are contragradient 
in the bonding region and lead to a positive value of 

( a l t l a )  + ( b l t l b ) -  ~ (a l t [b )  . 

However, if both orbitals are centered on the same center this need not occur. 
Consider a two-electron singlet state as in He or H -. Here each orbital is spherically 
symmetric and monotonically decreasing. Thus 

everwhere and C is identically zero; that is, there is no contragradience. Since it is 
C that makes T x so important for molecules, it may be that completely different 
parts of the energy are important for the stability of atoms and ions. 
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E. Larger Systems 

For systems with more electrons, the projection operator Oll involved in the 
wavefunction is more complicated and involves many permutations. However, as 
shown in Appendix A, T x can still be discussed in terms of pair contributions, each 
of which has the form of (2b). Just in the above comparison of the singlet and triplet 
states of two electrons, the sign of T x is generally determined by the corresponding 
permutation numbers, Ul1~, in the projection operator and thus by the tableau, 
as will be discussed in the next section. 

3. The Effect of  the Pauli Principle on Bond Formation 

The Pauli Principle (PP) states that the total wavefunction of a collection of 
identical particles must be either symmetric (in which case, the particles are called 
Bosons) or antisymmetric (where they are called Fermions) under transposition 
of the particle coordinates (spatial and spin). Which way the wavefunction behaves 
is determined by the spin of the particles-integral spin leads only to symmetric 
wavefunctions; half-integral spin leads only to antisymmetric wavefunctions [7]. 
We will be interested here in electronic systems and hence with Fermion wave- 
functions. 

To a good approximation in small molecules, the Hamiltonian may be taken 
to be independent of spin, so that the energy will depend only on the spatial part 
of the wavefunction. However, for a given spin symmetry, the PP fixes the per- 
mutational symmetry of the spatial part of the wavefunction and thereby deter- 
mines the form of the energy [3]. For example, for two electrons a singlet spin 
function is antisymmetric, and thus for Fermions the spatial part of the wave- 
function must be symmetric (Fig. 4a) in order that the total spatial-spin wave- 

(a) Singlet 

SPATIAL SPATIAL 

SPIN FERMION BOSON SPIN FEI~MION BOSON 

lo~Q ..... [rrWj ~ [~TrN 

Fig. 4. The spin and spatial tableaux for two, three, and four particle wavefunctions for both Fermion 
and Boson systems 
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function be antisymmetric. On the other hand, if electrons were spin-�89 Bosons [7], 
the spatial wavefunction would have to be antisymmetric (Fig. 4a). Similarly, a 
two-electron triplet spin function is symmetric; therefore, the Fermion spatial 
function must be antisymmetric and the Boson spatial function must be symmetric 
(Fig. 4b). 

For more than two particles, discussions of this type are most simply carried 
out in terms of the Young Tableaux (see Fig. 4), which graphically indicate the 
permutational symmetry [2, 3]. Here, successive numbers in the same column 
of a tableau indicate antisymmetrization, and successive numbers in the same row 
indicate symmetrization (see Ref. [3] for further discussion of the tableaux). For 
Bosons the spatial and spin tableaux must be the same in order for the total wave- 
function to be symmetric, whereas for Fermions these tableaux must be conjugates 
(that is, related by the interchange of the rows and columns) in order for the total 
wavefunction to be antisymmetric. The spin tableaux have at most two rows since 
the spin transformation space is two-dimensional. As a result, the spatial tableaux 
for Boson wavefunctions can have no more than two rows and those for Fermion 
wavefunctions can have no more than two columns. 

It is well known [8] that for a spin-free Hamiltonian with no nonlocal inter- 
actions, the spatial part of the ground state wavefunction is symmetric unless it is 
forbidden to be so by the PP. Thus we should expect the ground state of a two- 
Fermion system (spin-�89 to be a singlet state and that of two spin-�89 Bosons to be a 
triplet state (see Fig. 4ab). The restriction that the spin tableaux have at most two 
rows for spin-�89 particles implies that for Fermions the spatial tableaux have no 
more than two columns. Thus for more than two Fermions, the spatial state 
c a n n o t  be totally symmetric. For Bosons no such restriction arises, and we would 
expect the ground state to be a quartet for three particles, a quintet for four 
particles, etc. (see Fig. 4). 

A.  T h e  P a r t i t i o n  o f  T x 

As shown in Appendix A the exchange part of the kinetic energy can be 
written as 

Tx= Z (15) 
j > k  

for GI type wavefunctions, where the pair term Tj~ has the form 

TjXk ~ - -  O'jk T j k  , 

the factor Zig has the form 

[ 2 4jItfk)] = [4./I t I j )  + (kl t i e )  - "~ j k  

(16) 

(17) 

[identical with the bracketed factor of (2a)], and Crjk has the form 

~r jk = -- D jk S jk Os) 
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'Table 1. The diagonal matrix elements Uuo,) for the various transpositions Ok) 

Partition E 12] E23 [1 a] E2, 13 [143 [2,1 z] [2 z] 
Spin 0 1 ~ �89 2 1 0 

Tableau 

Transposition 

1 2 1 3 

3 4 2 4 

(12) +1 -1 -1 +1 -1 -1 +1 -1 -1 +1 -1 
(13) --  - -  -1 - 3  +3 -1 -3  +3 -1 -3  +3 
(23) - -  - -  -1  - 3  +�89 -1 -3  +3 -1 -�89 +�89 
(14) - -  - -  - 1  - 3  --~ + 3  - 3  + 3  
(24) - -  - -  -1 -�89 --~ +�89 -�89 +3 
(34) - -  - -  -1 -1 -�89 +3 +1 -1 

[cf., Eq. (2a)]. Usually ajk of (18) is dominated by the term [9] 

a jg ,,, - Uu(~k)S j~ , (19) 

where U~itjk) is the number specifying the coefficient of the (jk) exchange term in 
the many-electron wavefunction; the coefficients for various two, three, and four 
electron systems are given in Table 1 and are easily obtained from a consideration 
of the tableaux [3]. 

We will be interested in the intermolecular potentials and hence in the change 
in the energy, A E, as atoms are brought together. Assuming that A E is dominated 
by A T x, we will want to examine the contributions to A T x. Since 

x ~ __  U i i ( j k ) S j k Z j  k Tjk 2 (20) 

we expect (especially for the frozen wavefunctions) that the largest changes with 
internuclear distance will occur for terms for which orbitals ~bj and 4~, are on 
different atoms. Of these interatomic T~] terms, we expect binding contributions 
from pairs for which Uu(jk)> 0 and antibonding contributions from pairs for 
wich UU(jk) <0. 

B. The  Hel l  and H2 H Sys tems  

Consider, for example, the He l l  system at large separations. At infinite separa- 
tion the He and H atoms are independent, with the spatial symmetry of the He 
atom described by the tableau 

(21) 
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(s ince  H e  is in  t h e  s ing le t  s ta te) .  T h e  t h i r d  e l e c t r o n  o f  H e l l  (R = oo) c a n  b e  c o u p l e d  

to  t h e  H e  f u n c t i o n  in  t w o  ways ,  

a n d  

(23) 

T h e  i n t e r a t o m i c  e x c h a n g e  t e r m s  U11 (13) a n d  U11(23) a r e  p o s i t i v e  ( + 1) fo r  (22) a n d  

n e g a t i v e  ( - � 8 9  for  (23) (see T a b l e  l ) ;  h e n c e  we  e x p e c t  

A T~'3 < 0, A T13 < 0  
for  (22) a n d  

A T(3 > 0 ,  ATe3 > 0  

fo r  (23). T h u s  t h e  w a v e f u n c t i o n  for  (22) s h o u l d  b e  b o u n d  a n d  t h e  w a v e f u n c t i o n  for  

(23) s h o u l d  b e  u n b o u n d .  

As  s h o w n  in  T a b l e  2, t h e  A T x a n d  A E h a v e  t h e  s igns  e x p e c t e d .  I n  a d d i t i o n  we 

n o t e  t h a t  A T x for  (23) is - �89 t i m e s  t h e  A T x for  (22) as  e x p e c t e d  f r o m  t h e  m a g n i -  

t u d e s  o f  t h e  i n t e r a t o m i c  U , ( j k  ) .  C o n s i s t e n t  w i t h  t h i s  we see t h a t  (22) is m o r e  s t a b l e  

t h a n  (23) is u n s t a b l e .  

I n d e e d ,  we w o u l d  h a v e  e x p e c t e d  t h e  w a v e f u n c t i o n  o f  s y m m e t r y  (22) to  h a v e  

t h e  l o w e s t  e n e r g y  s ince  it  is t o t a l l y  s y m m e t r i c .  H o w e v e r  for  F e r m i o n s  (22) is for-  

b i d d e n  b y  t h e  PP .  T h u s  t h e  g r o u n d  s t a t e  F e r m i o n  w a v e f u n c t i o n  m u s t  b e  d e s c r i b e d  

Table 2. Comparison of the Energies for Hell, H/H, H2H2, Hell2, and Helle with Boson and 
Fermion spin-one-half electrons. In all cases the orbitals were frozen as the solutions for infinite 

separation. Here A refers to the energy at finite R minus the energy for R = oe 

Fermions Bosons 
System A E "  A T x ~ A E  a A T x a 

Hell  b + 0.001114 0.006488 - 0.003018 - 0.012844 
H2H linear c + 0.001693 0.009738 - 0.004879 - 0.01903 
H~H nonlinear d +0.001823 0.010344 -0.005235 -0.020191 
H2H / linear e + 0.001009 0.005796 - 0.002436 - 0.011472 
Hell  2 linear r + 0.000460 0.003119 - 0.001212 - 0.006214 
HeHe g + 0.000148 0.001221 - 0.000382 - 0.002439 

a E is the total energy and T x is the exchange part of the kinetic energy. Atomic units are used through- 
out, e = h = m e = 1; in these units 1 hartree = 27.211 eV = 627.51 kcal. mole -1 is the unit of energy, 
and 1 bohr = 0.52917 A is the unit of length. Cohen, E. R., DuMond, J. W. M.: Rev. mod. Physics 37, 
537 (1965). 

b R = 4.643. 
c He bond length = 1.4304242, the distance from the free H to the closest H of H 2 is 4.285. 
a Same as c with the angle between the H 2 axis and the vector from middle to third H = 30 ~ 
~ H2 bond length = 1.4304242, IMD = 4.285 (IMD is the distance between midpoints of the H 2 

molecules) [10]. 
f H2 bond length = 1.4304242, IMD = 4.643. 
g He 2 bond length = 5.0. 
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by (23) while the ground state spin - �89 Boson wavefunction is described by (22). 
In the following, we will refer to (22) as the Boson wavefunction and (23) as the 
Fermion wavefunction. 

For the system H 2 and D at infinite separation the H2 part of the wavefunction 
is described by the tableau (21) and the possible tableaux for HzD are (22) and (23). 
Thus at large separations the above discussion of Hel l  applies also to HzD. As 
expected the results in Table 2 show that for the frozen wavefunctions of H2D the 
Boson wavefunction leads to a bound state while the Fermion wavefunction leads 
to repulsion between the H 2 and D. 

D 
0 

H a H b D 

Fig. 5. Geometries for HzD. The location of each orbital is indicated 

For H2 and D we also can vary the angle between the D and H 2. Consider the 
geometries indicated in Fig. 5, where D is moved from the linear configuration 
while maintaining a fixed Hb-D distance. In this case for the frozen wavefunction 
A T~3 is nearly unchanged since (~2 and ~ba are the same distance apart (some 
changes occur due to the presence of a term in D23 involving the overlap of 4h 
and ~3). However large changes should occur in A T~3 since ~b t and q~3 move 
closer together, leading to an increased overlap, S t 3 (since vjk is dominated by the 
diagonal terms of (17), we expect only small changes in z a 3). From (20) we expect 
for such nonlinear distortions, that A T(3 will become more negative in the Boson 
case and more positive in the Fermion case. Thus for Fermions the most favorable 
geometry should be linear, and for Bosons the bent geometry should be favored. 
As shown in Table 2 this is the case. (On the basis of such arguments with frozen 
wavefunctions one would expect the optimum geometry for Boson H3 to be an 
equilateral triangle.) Thus even fine structural details are reflected by TX! 

C. The H%, H/He, and HzH 2 Systems 

Now consider He/ at large separations. At infinite separation we have two 
independent He atoms described by the tableaux 

~ ]  and ~ (24) 

respectively. Two ways of coupling these tableaux are 

I1j213j4j 
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and 

1 2 
(26) 

3 4 

Here (25) should have the lowest energy and should lead to binding, but is allowed 
only for Bosons. For  Fermions the lowest allowed state is (26). 

The intermolecular terms now involve the pairs 

13, 14,23, and 24 

each of which leads to Ull ~ = + 1 for (25) and Ull ~ = - �89 for (26) (see Table 1). 
Thus we expect 

ATX<0 and AE<O 
for (25) and 

ATX>0 and AE>O 

for (26). These expectations are verified by Table 2. 
For  H 2 and He or H 2 and H 2 the tableaux at infinite internuclear separation 

are also as in (24) so that the relevant four-electron tableaux are again (25) and (26). 
Thus for Bosons we obtain binding and for Fermions we obtain repulsion. Fixing 
the shorter H-He distance and moving the He off axis we see that (just as for 
H2D) the Boson wavefunction favors nonlinear geometries for HzHe while the 
Fermion wavefunction favors linear geometries. Similarly for H2 and D2 if the 
closest H-D distance is fixed and the positions of the other H and D are varied, 
we see that the Boson wavefunction favors nonlinear geometries while the Fermion 
wavefunction favors the linear geometry [10]. 

D. The LiH Molecule 

The Li + ion is a singlet state and is described by the tableau (21). Since the core 
orbitals ~b 1 and 42 of Li + should be essentially the same in Li atom, we expect 
(correctly [11]) the tableau for Li atom to be 

(27) 

where ~3 refers to the valence orbital. For  Li and H at infinite separation the 
allowed tableaux for Fermions are then 

1 2 

3 4 

(28) 

and 

(29) 



224 w.A. Goddard III and C. W. Wilson, Jr.: 

where r refers to the HI~ orbital. Here (28) describes a singlet state while (29) 
describes a triplet state. The intermolecular terms involve the pairs 

14, 24, and 34; 

however 41 and q~2 being Li core orbitals are much more concentrated near the 
Li nucleus than is the valence orbital q~a- Thus we expect 

$34 >> S14, $24 

and for sufficiently large distances 

For (28) 

while for (29) 

IA r~4t ~> IA r~,l, 14 r~41. 

UI~(34) = + I 

Ul1(34) = - 1. 

Thus from (20) we expect the singlet state of LiH to be bound while the triplet state 
should be unbound, in agreement with calculations [12] and experiment. 

For very short distances we would also have to consider d T~4 and d T14 (note 
that h4,  %4 >> %4) both of which are positive for (28) and (29). Thus when the H 
orbital starts penetrating the Li core we expect new large repulsive terms and 
consequently a steeply repulsive energy curve. At larger distances the non- 
involvement of d 7]'14 and A T~4 is consistent with the usual assumption that the 
core orbitals are not involved in the binding. 

E. Interaction between Triplet State Molecules 

So far we have examined interactions between systems A and B where A and 
B are both singlet states or both doublet states or one of each. Now we consider 
separated systems both of which are triplet states. We will consider A and B to 
each have two electrons so that the tableaux at infinity will correspond to 

and 

[e.g., He(3S) plus He(aS)] although a more interesting example would be two 
ground state methylenes, CH2(3B0, combining to form ethylene. At infinite 
separation the possible tableaux are 

1 1 3 

2 4 

(30) (31) 
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and the combination 

such that Uii(3~) = - 1. The intermolecular terms involve the pairs 

13, 14, 23; and 24 
for which 

(32) 

V i i  n = - 1 for (30) 

U11~ = +�89 for (31) (33) 
and 

Ull ~ = 0 for (32). 

Thus the quintet state should be quite repulsive, the singlet state should be quite 
attractive, and the triplet state binding should be determined by higher order 
terms [13] and self-consistency effects (to become attractive). These conclusions 
are in agreement with the results of Klein [-14] on He(3S) plus He(3S). For the 
interactions of two triplet methylenes we would expect from these considerations 
that the singlet potential curve should be attractive with no hump at large R. 

F. S u m m a r y  

Considering the above results for Fermion and Boson systems, we see that 
interacting species A and B are expected to lead to attractive terms when the 
combined tableau contains electrons in the same row originating on different 
species, as in (25), (28), and (31). Repulsive terms result when electrons in di f ferent  
rows originate on different species, as in (26), (29), and (30). Analyzing these inter- 
actions in terms of A Tj] for the frozen wavefunctions allows one to predict stabili- 
ties and geometries of molecules without detailed computations. 

4. Contragradience and the Bond Region 

Since the structure and properties of large molecules can generally be rationa- 
lized in terms of bonds each localized near a pair of atoms, one would expect that 
the part of the wavefunction important for a particular bond would be just the 
part in between (or near) the pair of nuclei. However despite the intuitively clear 
idea of where the bond region is, it has not been easy to obtain a useful quantitative 
definition of the bond region. For example, one definition used for diatomic 
molecules is the region enclosed by the parabolas - rlo <_ (ra - rb)/R <= rio, where 
qo is an adjustable parameter [6, 14, 15]. By this definition, the bond region 
includes points infinitely far from either nucleus, contrary to the usual chemical 
concept. Such a definition leads to obvious problems for polyatomics (for example, 
empirically established rules such as bond additivity clearly require a finite bond 
region). 
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(a) (b) 

Fig. 6a and b. The contragradience function for the G1 wavefunction of H2 at R = 1.4. (The contours 
are equally spaced starting at 0.0045 a.u. for the outer contour with increments of 0.0045 a.u.), a Frozen 

wavefunction, b SCF wavefunction (eight basis functions) 

On the other hand, an examination of T X and the contragradience yields a use- 
ful criterion for the bond region. In Section 2, we found that the main contribution 
to A T X arises from the contragradient nature of the orbitals in the region between 
the nuclei. We also saw that it is the large drop in the contragradience part of T x 
which is reponsible for bond formation. Indeed we might almost say that it is this 
contragradient nature of the orbitals which is responsible for bonding. Thus it 
would seem appropriate to consider the regions of largest contragradienee to be 
the regions most important to bonding. This would lead to a natural definition 
of the bond region as that part of space containing, say, 80 % of the contragradience. 
In Fig. 6 we show the plots of the contragradience for the frozen and SCF (eight 
basis function) wavefunctions of H2 for R = 1.4. (The regions shown here include 
about 80 % of the total contragradience.) We see that despite the large changes in 
the wavefunctions due to self-consistency, the contragradience is relatively un- 
changed except in the heart of the bond region. More importantly the resulting 
picture of the bond is rather close to the intuitive idea of what a bond is. 

Similarly for a pair of orbitals exhibiting antibonding, the plot corresponding 
to Fig. 6 would display the region important in the antibonding interactions. (The 
SCF contragradience would be greatly reduced and would differ greatly from 
Fig. 6bl) 

5. Discussion 

First we will summarize some of the conclusions from the previous sections. 
It is the change in the exchange kinetic energy, d T x, which determines whether 

a molecular system will be stable, and it is the contragradient part of A T x, which is 
primarily responsible for this. The contragradience function, c(r), for a pair of 
orbitals is just the product of the magnitudes of the gradients of the two orbitals 
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minus the dot product of the gradients. Thus for a bonding pair such as H2, c(r) 
favors binding in the region in which the orbitals are contragradient, namely the 
region between the nuclei and close to the axis. Thus by defining the bond as the 
region where c(r) is large, we arrive at something rather close to the intuitive idea 
of where the bond is. 

As Ruedenberg [17] (also see Ref. [1]) has discussed elsewhere, the bond does 
not result from electrostatic considerations (such as putting the electron where it 
can attract both nuclei) [18]. Rather we find that the strength of a bond is deter- 
mined by the existence of a region in which the orbitals on the two atoms have 
large slopes in oblique directions, i.e., where the contragradience is large. In 
general, we find that the sign of A T x is determined by consideration of the tableau 
appropriate for the spin symmetry of the system being considered. In particular 
the A T * can be partitioned into terms arising from various pairs, and for the case 
of frozen orbitals, the sign of each intermolecular component can be predicted 
from the tableau. When the combined tableau is G1 [e.g. (26)] this sign is positive 
for a pair in the same row of the tableau and negative for a pair from different rows. 
Thus closed-shell systems repel each other because the intermolecular pair terms, 
7~{, involve orbitals in different rows. 

From these considerations we would view the aspects important for bond 
formation in terms of the following steps: (1) freeze the orbitals of the separated 
atoms; (2) bring the atoms together to their positions in the molecule (this leads to 
T xv and to about the correct binding energy); and (3) allow the orbitals to relax to 
their SCF forms. In step (3) the orbitals rehybridize somewhat and contract more 
about each nucleus but also spreading onto the other centers, readjusting the 
various nuclear attraction, electron repulsion, the kinetic energy terms until self- 
consistency is achieved (after which the virial theorem, Hellmann-Feynman 
theorem, etc., would hold). However the crucial step is (2). In order for a strong 
bond to form, this must lead to a large negative A T xF, through a decrease in the 
contragradience contribution to the energy. 

Appendix A: The Partition of T x 

The spatial part of the GI wavefunctions has the form 

0 u �9 (A-I) 

where ~ is a product of orbitals and Ou is the permutational operator [2, 3] 

1 
O i l -  0 ~' 2 Uii~ 7C" (A-2)  

n ~ s:N 

Here the Un~ is the ii matrix element of the representation matrix for the per- 
mutation n (see Table 1 for the values of some U,.i~). 

The kinetic energy, T, of the wavefunction (A-l) is given by 

 =(ol 
j = l  

16 Theoret. chim. Acta (Berl.) Vol. 26 
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where t r is the one-electron kinetic energy operator, - �89 V 2, for etectronj. Eq. (A-3) 
is expanded as 

N 

T =  ~ Drk((arltldPk ) (A-4) 
j , k = l  

in terms of the orbital density matrix, [19] Djk , which depends upon the represen- 
tation matrices U/i, and upon the overlaps of the various orbitals. For most cases 
of interest to us here [see, for example (A-13) to (A-16)] Drk is dominated by the 
term 

Djk ~ Uiitr,k ) Srk (A-5) 

where Sjk is the overlap of orbitals q~j and ~b k. 
Next we consider the partition of the exchange kinetic energy (T x) into pair 

terms, T~. The classical part of T is defined as 

N 

T cl --- ~ ( . j l t l j ) .  (A-6) 
j = l  

Thus since the total kinetic energy is given by (A-4), we obtain [20] 

N N 

T * = T -  TC~= ~ 2Drk(.]ltlk ) -- ~(1  - -Dj j )  ( j [ t l j )  
j > k  i 

But by the definition of Drk (see Ref. [2]), 

Djk Srk --- 1 
J 

for any k. Thus we obtain 
N 

TX= ~ T~, (A-7) 

where J > k 
T~ -- Djk{2( i l t l k  ) - Sjk[(,jLtlj ) + @[ t l k ) ] }  . (1-8) 

When Srk r O, it is more convenient to define 

zrk=[(,jltlj>+<k,ttk>--2--~-.K(.jltlk>] (1-9) 

and ark = Drk Srk (A-IO) 
so that T~] = - arkZrk. (A-11) 

In this case if orbitals j and k are on different centers, rrk is relatively insensitive 
to the internuclear separation and only ajk varies rapidly with distance. From 
(A-5) the leading term of ark is 

r j k  ~ Uii( j ,k)Sj2k " (A-12) 

So that the sign of Tj~ is determined by the sign of U,o,k ). 
For convenience in the discussions in this paper we list below the 0.jk for 

several tableaux. For a two-electron singlet state. (see Fig. 4a) 

0-12 = $22/(1 --[- $22). (A-13) 
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F o r  a two-e l ec t ron  t r ip le t  s ta te  (see Fig.  4b)  

0"12 = - -  S 1 2 2 / ( 1  - -  $ 1 2 2 ) .  

F o r  a th ree -e lec t ron  d o u b l e t  s ta te  (see Fig.  4d) 

(A-14) 

a ig  = $2a(1 - �89 $23)/N3 I 

/ 1 2 
0"13 = - -  2S13(1 + $12 S23)/N3 

1 2 
0 - 2 3  = - -  ~ - $ 2 3 ( 1  + S12S13)/N3 (A-15) 

where  / 
N3 1 +  S~2 1 2 1 2 - -  ~ $ 1 3  - -  ~ - 5 2 3  - 5 1 2  5 1 3  S 2 3  . 

F o r  a fou r -e l ec t ron  s ingle t  s ta te  (see Fig. 4j a n d  4k) 

f f i j  = S i j ( S i j  - -  1 1 1 ~ S i k S k j  - -  ~ S i l S l j  - ~ S i l S l k S k j  
(A-16a) 

-- 1SikSlaSlj  q- S i jS~l) /N 4 
a n d  

0-ik = --  1 Si  k (Sik _~ Si  j S j  k ..11 - Si  I Sl  k _~ Si  j S j  l Sl  k 
(A-16b) 

- 2&k S 2, - 2Si, Sij Sjk)/N4 

where  i a n d  j are  in  one  row a n d  k a n d  1 are in  the other.  Here  

4- 

m = l  

for a n y  n, where  0-',,, = 0-,ran 4 [ tha t  is, 0-'~m is the n u m e r a t o r  in  (A-16)]. T h u s  

! t t 
N 4 = N 3 +0"14 +0-24+0"34 ,  

which  is useful  in  co n s i d e r i n g  L i H  at  large R. F o r  a sys tem where  b o t h  Sle a n d  $34 
are  large a n d  the  Sfk are small ,  t hen  

- (1 + s 2) (1 + 
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